
Texture-Based Edge Bundling:
A Web-Based Approach for Interactively Visualizing Large Graphs

Jieting Wu
Computer Science and Engineering

University of Nebraska-Lincoln
Email: jwu@cse.unl.edu

Lina Yu
Computer Science and Engineering

University of Nebraska-Lincoln
Email: lina@cse.unl.edu

Hongfeng Yu
Computer Science and Engineering

University of Nebraska-Lincoln
Email: yu@cse.unl.edu

Abstract—Directly visualizing a large graph as a node-link
diagram often incurs visual clutter. Edge bundling can effec-
tively address this issue and concisely reveal the main graph
structure with reduced visual clutter. Although researchers
have devoted noticeable efforts to develop acceleration methods,
it remains a challenging task to efficiently conduct edge
bundling on devices with a limited computing capacity, such
as ubiquitous smart mobile devices. We present a new method
for visualizing a node-link diagram based on force-directed
edge bundling. We use textures to encode the data of lines
and forces, and employ shaders to conduct the iterative line
refinement on GPUs. We name this method as Texture-Based
Edge Bundling (TBEB) as the major steps are done using
textures. We demonstrate the high performance of TBEB
using standard graphics cards. TBEB makes it feasible to
interactively visualize large graphs on web-based platforms.

Keywords-graph visualization; edge bundling; network visu-
alization; mobile devices; GPU computing.

I. INTRODUCTION

Graphs are widely used to model relationships between
data entities in diverse scientific and engineering applica-
tions, such as systems biology, software engineering, social
science, and so on. Visualization is an effective means
to reveal salient graph structures and patterns, as well as
similar communities and subtle outliers. Among various
graph visual representations, node-link diagram is one of
the most prevailing techniques because of its simple and
intuitive structure [6], [12]. However, a node-link diagram
of dense graph often suffers from visual clutter, as its
visual readability can be quickly degraded with an increasing
number of nodes and edges.

To address visual clutter of node-link diagram, a new
concept of edge bundling has been proposed, and has been
applied to hierarchical graphs [7] and general graphs [8].
These algorithms can concisely reveal the main structure of
a graph by grouping related edges together into a set of
smooth curved bundles. However, their execution typically
involves a considerable computing cost to achieve a visually
appealing result for a large graph. Although researchers have
experimented with acceleration methods [14], these solu-
tions mostly reply on features dedicated to special graphics
hardware or libraries. Therefore, it remains a challenging

task to interactively construct and visualize edge bundles of
large graphs on devices with a limited computing capacity,
in particular, on ubiquitous smart mobile devices.

We present a new method for constructing and visualizing
edge bundles of large graphs using standard functions of
graphics cards. We employ the computation model of force-
directed edge bundling [8], encode the data of lines and
forces into standard texture images, and conduct interactive
line refinement using vertex and fragment shaders that are
the standard functions of graphics systems. As the major
steps are conducted through the usage of textures, we name
this method as Texture-Based Edge Bundling (TBEB).

The method uses the standard graphics functions and
libraries, and can be nearly universally applied on devices
with standard graphics processing units. In addition, we
present a web-based implementation that can be easily mi-
grated across devices and platforms without any significant
overhead. We demonstrate the effectiveness of our method
using multiple data sets on devices with standard graphics
cards. We achieve interactive frame rates to conduct and
render the edge bundles of a graph with thousands of edges
in a web browser. Overall, our TBEB method is easy to
understand and implement.

II. RELATED WORK

We refer interested reader to the surveys conducted by
Herman et al. [6] and Vehlow et al. [12] for an overview of
graph visualization, and to the surveys conducted by Beck
et al. [1] and Landesberger et al. [13] in specific techniques
for dynamic graphs and large graphs. This paper focuses on
node-link diagrams.

Although the node-link representation is one of the most
popular ways to visualize graphs, visual clutter can be easily
generated if we render a large number of edges as straight
lines. To remedy this problem, Holen [7] presented a new
technique, named hierarchical edge bundles, that constructs
smooth curved bundles to represent a set of edges at the
relevant levels of a hierarchical graph. This technique can
effectively reveal the high-level structure of a graph, while
significantly reduce visual clutter. This method has been

further evolved to force directed edge bundling (FDEB) for
visualizing a general graph without hierarchy [8].

Many researchers have made efforts to generalize and
improve edge bundling. Cui et al. [2] introduced a geometry-
based edge clustering method. They first generated a control
mesh at different levels of detail with respect to underlying
graph patterns, and then used this mesh to guide edge-
clustering and achieve different visualization results. Telea
et al. [11] used an image-based technique that leverages
distance-based splatting and shape skeletonization to render
a hierarchical edge clustering of a graph. This method has
been further extended to a skeleton-based edge bundling
method that combines edges clustering, distance fields, and
2D skeletonization to construct edge bundles [4]. Based on
fast agglomerative clustering techniques, Gansner et al. [5]
adopted a guiding princliple to save ink for drawing edges
and enhancing the effectiveness of edge bundling. Selassie et
al. [10] proposed divided edge bundling to improve bundling
results by considering graph topology.

Although these edge bundling based approaches can
achieve visually appealing results, they are characterized
with high algorithmic complexities. The execution of such
an algorithm may take several to hundreds of seconds to
compute bundles for large graphs. This performance lag
hinders the usage of these methods on interactive applica-
tions. A few efforts have been perceived to accelerate the
construction of edge bundles. Ersoy et al. [4] used GPUs to
accelerate their skeleton-based edge bundling. Zhu et al. [14]
presented a parallelized FDEB on GPUs, and achieved a
11× speedup compared to the original FDEB. However,
these methods rely on NVIDIA’s CUDA architecture, which
cannot be easily adopted to general graphics cards.

III. BACKGROUND

In this paper, we aim to accelerate force direct edge
bundling (FDEB) [8] using standard functions of general
graphics cards, and make edge bundling deployable and
compatible on web-based platforms.

Figure 1. Edge bundling based graph visualization.

Figure 1 shows a general framework of graph visualization
using edge bundling. Given an input node-link diagram, we
first use edge bundling to group the edges and build a set of
smooth curved bundles, and then send the generated geom-
etry data of bundles to GPUs for rendering. This framework

typically suffers from two main performance bottlenecks
for large graphs: First, edge bundling requires considerable
computing power for a large amount of edges. Second, if we
conduct edge bundling using a CPU, transferring the data of
bundles from the main memory to the GPU memory is costly
for a large graph. For an interactive graph visualization, edge
bundling and rendering need to be carried out frequently to
response each user interaction. Thus, these two operations
can become a severe problem in interactive applications of
large graphs.

A. Force Directed Edge Bundling

We first revisit the computational model of FDEB. As
shown in Figure 1, FDEB takes a node-link diagram with
straight edges as its input, and uses an iterative simulation
to refine the bundling. There are total C simulation cycles.
In each cycle, FDEB first subdivides each edge and then
iteratively moves each subdivision point to a new position
by modeling and computing forces among the points.

In the first simulation cycle C0, FDEB starts with P0 sub-
division points for each edge . For example, in Figure 2(a),
each edge has two end points (in orange) and one subdivision
point (in blue), and is subdivided into two segments (i.e.,
P0 = 1 in this case). Then, two types of forces, the spring
forces Fs and the electrostatic forces Fe, are modeled at a
subdivision point pi j, where pi j is the jth point on an edge
li, as shown in Figure 2(a). Fs is defined as:

Fs = kp(‖ pi(j−1)− pi j ‖+ ‖ pi j− pi(j+1) ‖), (1)

where kp is a spring constant, and pi(j−1) and pi(j+1) are the
neighboring points of pi j on the edge li. Fe is defined as:

Fe = ∑
m∈E

1
‖ pi j− pm j ‖

, (2)

where E is a set of edges where each edge lm interacts with
li. pm j is the corresponding subdivision point on such an
interacting edge lm. Thus, the combined force Fpi j exerted
on pi j is:

Fpi j = Fs +Fe. (3)

The position of pi j is updated by moving it a small distance
in the direction of Fpi j . This is an iterative process in that Fe,
Fs, and Fpi j are also updated according to the new position
of pi j. A specific number of iteration steps I is conducted to
move the subdivision points to reach an equilibrium between
forces. Figure 2(b) shows the equilibrium state of C0. The
edge subdivision and the subdivision point movement are
continued in the following simulation cycles. Figure 2(c)
and (d) illustrate the process of C1.

The number of iteration steps during the first cycle is I0.
We can easily see that the number of subdivision points is
doubled to smoothen the edges after performing a cycle.
Meanwhile, the number of iteration steps I is decreased by
a factor R. The original paper of FDEB [8] reported that a

(a)

(b)

(c)

(d)

Figure 2. Edge subdivision and subdivision point movement in FDEB.

configuration of P0 = 1, C = 6, I0 = 50, and R = 2/3 leads
to appropriate results.

The size of E can be significant for a large graph, and
thus increase the computing cost. To address this, FDEB
uses four criteria, angle, scale, position, and visibility, for
edge compatibility measures. Only the edges with the com-
patibility measures greater than a threshold are considered as
interacting edges. In this way, FDEB can control the amount
of interaction between edges, and thus reduce the computing
overhead.

B. Parallelization Strategy

We characterize FDEB and observe several possibilities to
parallelize the computing with respect to simulation cycles
and iteration steps:
• We can see that each line can be subdivided indepen-

dently in each simulation cycle. On the other hand,
each line should have the same number of subdivision
points to compute the combined force. This implies that
the line subdivision needs to be synchronized in each
simulation cycle. That is, asynchronous line subdivision
across simulation cycles is not allowed.

• We can see that in each iteration step, the combined
force of each subdivision point can be computed in-
dependently. Similarly, the position of points can be
updated in parallel as well.

• Given a specific configuration of P0, C, I0, and R,
the total amount of subdivision points of a graph is
deterministic after the last simulation cycle of FDEB.
This implies that we can pre-allocate the memory to
accommodate the data of final result.

Based on these observations, we can derive the following
parallelization strategy:

First, we use a 2D matrix to represent the graph. Each
row corresponds to one edge li, and each entry records the
position of a point pi j. The total matrix entry number is equal
to the total point number that will be generated by FDEB
in the final cycle. Initially, only the first two columns are
filled, which correspond to the two end points of the original
straight edges. We then insert the subdivision points into the
2D matrix at each simulation cycles. For example, Figure 3
(a) and (b) show the matrixes of C0 and C1, respectively,
where the orange entries correspond to the end points, and
the blue entries correspond to the subdivision points at each
cycle. Compared to Figure 3 (a), we can see that a new blue
entry (i.e., a new subdivision point) has been inserted into
each row (i.e., an edge) of the matrix in Figure 3 (b). This
process will be continued until the whole matrix is filled.

Second, given the positions of all points, we can compute
the combined force Fpi j of a point pi j using Equations 1, 2,
and 3. The position value of pi j then is updated by moving
it a small distance according to Fpi j . The updated position
is directly recorded into the entry of pi j in the 2D matrix.

Figure 3 illustrates this parallelization strategy. We can see
that the computing task associated with pi j is largely inde-
pendent with each other. Intuitively, we can assign each task
of pi j to a thread, and execute them in parallel. Algorithm 1
shows a realization of our parallelization strategy1. Lines 12-
18 correspond to the operation of edge subdivision, and
Lines 21-29 correspond to the operations of force calculation
and subdivision point movement. Special care has been taken

1To simplify the discussion, the technical detail of compatibility measure
is not described, but its timing result is included in our performance
evaluation.

(a)

(b)

Figure 3. The 2D matrix representation of graph used in our parallel
FDEB strategy.

to ensure the synchronization across the simulation cycles
(Line 19) and the iteration steps (Line 28).

Conceptually, Algorithm 1 can be easily implemented
using multi-thread techniques on CPUs or GPUs (Line 12
and Line 22). For example, one implementation has been
proposed using CUDA on NVIDIA graphics cards [14].
GPU-based implementations are especially attractive as a
significant speedup can be possibly achieved by leveraging
the massive parallelism of a GPU. However, these imple-
mentations often rely on specific graphics cards or graphics
features, such as direct GPU memory write, that are not
universally supported. In particular, mobile devices are often
equipped with lower-end GPUs, and are less capable to carry
out the calculation in Algorithm 1.

IV. TEXTURED BASED EDGE BUNDLING

We present a new method to realize the visualization
framework in Figure 1 by holistically addressing edge
bundling and rendering. Our method uses standard graphics
features specified in OpenGL and WebGL, and thus can be
easily adopted by various devices with standard GPUs. In
particular, if we conduct our method using WebGL, the web
page of interactive edge bundling can be displayed on most
web browsers without any modification.

A. Concept

The main challenge for us to perform FDEB using
OpenGL or WebGL is that there is a lack of functionality of
direct GPU memory access in OpenGL or WebGL. When we
use OpenGL or WebGL, GPU memory access is typically
conducted through texture functions. For GPU memory read,

Algorithm 1 PARALLELFDEB
1: // Initialization
2: C← the number of simulation cycles
3: I0← the number of iteration steps in the first cycle C0
4: R← the decreasing factor
5: t ← the number of points of each edge after the last

cycle
6: Given n edges, create one 2D matrixes M with n rows

and t columns.
7: Fill the two end points of all edges into the first and

third columns of M, respectively.
8: Ci← 0; Ii← I0
9: // Simulation

10: while Ci <C do
11: // Subdivide each edge
12: for each entry pi j of M in parallel do
13: if pi j is an end point at Ci and Ci > 0 then
14: Copy the corresponding end point at Ci−1 to pi j.
15: else
16: Compute pi j as a subdivision point according to

the previous subdivision points at Ci−1.
17: end if
18: end for
19: Synchronization
20: // Iteratively move the subdivision points
21: for each iteration step of Ii do
22: for each entry pi j of M in parallel do
23: Compute Fs with respect to pi j.
24: Compute Fe with respect to pi j.
25: Fpi j ← Fs +Fe.
26: Move pi j a small distance in the direction of Fpi j ,

and update pi j in M.
27: end for
28: Synchronization
29: end for
30: Ci←Ci +1
31: Ii← Ii×R
32: end while

we can first upload data from the main memory to the GPU
memory via texture binding, and then access texture data
via texture lookup in vertex or fragment shaders. For GPU
memory write, we can first bind texture as a Framebuffer
Object (FBO) and render data into FBO. The rendering
function can be customized using vertex or fragment shaders
so that we can control the contents that are written to
texture. Because we cannot directly read and write one
texture simultaneously, we can use the ping-pong buffering
(or double buffering) method [9] to read the input and write
the output through textures, and thus enable the operations
of edge subdivision, force computing, and position updating.

Algorithm 2 TEXTUREBASEDEDGEBUNDLING

1: // Initialization
2: C← the number of simulation cycles
3: I0← the number of iteration steps in the first cycle C0
4: R← the decreasing factor
5: t ← the number of points of each edge after the last

cycle
6: Given n edges, create two 2D matrixes Ma and Mb. Each

matrix has n rows and t columns.
7: Fill the two end points of all edges into the first and

third columns of Ma, respectively.
8: Tin←Ma // Bind Ma as the input texture Tin
9: Tout ←Mb // Bind Mb as the output FBO Tout

10: Ci← 0; Ii← I0
11: // Simulation
12: while Ci <C do
13: TEXTUREBASEDSUBDIVISION(Tin, Tout , Ci)
14: Swap Tin and Tout (i.e., the previous Tout becomes the

input texture, and the previous Tin becomes the output
FBO).

15: // Iteratively move the subdivision points
16: for each iteration step of Ii do
17: TEXTUREBASEDUPDATE(Tin, Tout) Line
18: Swap Tin and Tout
19: end for
20: Ci←Ci +1
21: Ii← Ii×R
22: end while

B. Algorithm

The main algorithm of our method is illustrated in Algo-
rithm 2. Given a specified configuration (i.e., P0, C, I0, and
R), we can predict the number of points of each edge, t, after
the last cycle. Given a node-link diagram with n edges, we
construct two 2D matrixes Ma and Mb, and each matrix has
n rows and t columns. Our goal is to fill each entry of one
matrix with the final position of a subdivision point after the
completeness of simulation.

Initially, we fill the two end points of all edges into the
first and third columns of a matrix Ma. We then bind Ma
as the input texture Tin, and bind Mb as the output FBO
Tout . The 2D or 3D position coordinates are encoded into
the color components of the input texture Ma. Then, during
each simulation cycle, we use a fragment shader TEXTURE-
BASEDSUBDIVISION to conduct edge subdivision (Line 13
in Algorithm 2), and then iteratively call another fragment
shader TEXTUREBASEDUPDATE (Line 17 in Algorithm 2)
to compute the forces and update the point position.

Algorithm 3 lays out the TEXTUREBASEDSUBDIVISION
fragment shader. Each pixel pi j of Tout represents the jth
point of an edge li at a simulation cycle Ci. If pi j is an
end point at Ci, we can directly fetch the corresponding end

Algorithm 3 TEXTUREBASEDSUBDIVISION(Tin :
input texture; Tout : out put f bo; Ci : simulation cycle)

1: for each pixel pi j of Tout in parallel do
2: if pi j is an end point at Ci and Ci > 0 then
3: Fetch the corresponding end point in Tin using

texture lookup and copy the value to pi j.
4: else
5: Compute pi j as a subdivision point according to

the previous subdivision points in Tin using texture
lookup.

6: end if
7: Render pi j into Tout .
8: end for

Algorithm 4 TEXTUREBASEDUPDATE(Tin : input texture;
Tout : out put f bo)

1: for each pixel pi j of Tout in parallel do
2: Fetch the corresponding points in Tin using texture

lookup and use them to compute Fs and Fe with
respect to pi j.

3: Fpi j ← Fs +Fe.
4: Move pi j a small distance in the direction of Fpi j .
5: Render pi j into Tout .
6: end for

point pi j in Tin using texture lookup and copy the value to pi j
in Tout . Otherwise, we compute pi j as a subdivision point
according to the previous subdivision points in Tin using
texture lookup. We then render pi j as a color into Tout . The
key of this step is the transform between texture coordinates
and the indexes of lines and points. When we encode a data
set into a texture, a data point is accessed through a 2D
texture coordinate (x,y), where the x or y component of
texture coordinate is typically within the range of 0.0 and
1.0. If we encode a 2D n× t matrix into a 2D texture, for
an entry at the ith column and the jth row of the matrix, its
2D texture coordinate (x,y) is computed as:

x = i/(n−1),y = j/(t−1). (4)

Accordingly, a 2D texture coordinate (x,y) is corresponding
to the entry (i, j):

i = ceil(x×n), j = ceil(y× t). (5)

We use this transformation to read (write) the points from
(into) the textures.

Algorithm 4 lays out the TEXTUREBASEDUPDATE frag-
ment shader. According to the texture coordinate of each
pixel pi j of Tout , we can use Equation 5 to compute the
corresponding indexes of line and point, and locate the
indexes of the points that are needed in Equations 1, 2,
and 3. These indexes are then translated into the texture
coordinates in Tin using Equation 4, which allows us to fetch

the corresponding points in Tin using texture lookup and use
them to compute Fs, Fe, and Fpi j with respect to pi j. We
then move pi j a small distance in the direction of Fpi j , and
render pi j as a color into Tout .

We swap Tin and Tout during each simulation cycle and
each iteration step (Lines 14 and 18 in Algorithm 2) to
enable GPU memory read/write via ping-pong buffering.
In this way, we can always compute the new subdivision
points and write them into the output texture according to
the previous points stored in the input texture. Similarly, we
can iteratively compute the forces and update the position
of each point by flipping the input and output textures.

The entire bundling process is completed until we perform
all C simulation cycles. We obtain the output texture where
the entries are filled with the final positions of subdivision
points of all edges. Then we need to render the edges
encoded in the texture.

C. Rendering

After the final simulation cycles, we transform the struc-
ture of 2D matrix of the output texture into a 1D array,
and bind this array into a Vertex Buffer Object (VBO) [9].
Then we can interactively render a large number of lines
using VBO. Because the output texture and the VBO are
all located in the GPU memory, we can directly conduct
rendering in GPU and avoid the costly data transferring
between CPU and GPU in the conventional method shown
in Figure 1.

We note that texture lookup, FBO, VBO, and fragment
shaders are standard graphics functions in the specification
of OpenGL and WebGL, and are nearly fully supported by
all graphics vendors. Thus, our method can be adopted to
most devices with standard graphics processing units.

V. RESULTS

A. Performance Evaluation

We have evaluated the performance of our method. We
have compared the following methods:
• the original CPU-based FDEB [8],
• the CUDA-based FDEB [14],
• the JavaScript-based FDEB of d3 [3],
• our TBEB method using a WebGL implementation.

There were three different devices used in our experiment:
• a desktop with an 8X Intel Core i7 3.60GHz CPU and

an NVIDIA GeForce GTX 660 GPU,
• a laptop with an AMD mobile quad-core A10-5750M

2.5Ghz CPU and an AMD Radeon HD 8790M GPU,
• a Nexus 9 tablet with a dual-core Denver 2.3GHz CPU

and a Kepler DX1 GPU.
We first used a graph of US migration (1732 nodes, 2180
edges). Table I shows the timing results. We can clearly
see that the performance of our method is significantly
higher than the CPU- and JavaScript-based FDEB methods.

On the desktop, our method reaches around 20 frames per
second (fps) for constructing and rendering the edge bundles,
while the CPU (JavaScript)-based FDEB takes around 6
(19) seconds. Our method achieves a 124× (380×) speedup
compared to CPU (JavaScript)-based FDEB on the desktop.
The performance of the CUDA-based FDEB is superior to
our method; however, it requires NVIDIA graphics cards.

Only our TBEB and the JavaScript-based FDEB can run
on all three devices. As shown in Table I, our method
reaches around 10 (5) fps on the laptop (tablet), and achieves
a 662× (55×) speedup compared to the JavaScript-based
FDEB. Overall, our method maintains an interactive or
nearly interactive frame rate on all three devices.

Table I
PERFORMANCE COMPARISON USING THE US MIGRATION GRAPH.

Desktop Laptop Tablet
CPU-based FDEB 6.23s - -

CUDA-based FDEB 0.001s - -
JS-based FDEB 19.06s 59.63s 12.80s

WebGL-based TBEB 0.05s 0.09s 0.23s

We have also conducted the performance comparison us-
ing a graph of US airlines (235 nodes, 2101 edges). Table II
shows the timing results. Averagely, our method achieves
a 240× speedup compared to JavaScript-based FDEB for
processing the graph with two thousands of edges on three
devices. In particular, on the laptop, our method only uses
0.16 seconds to compute and render the edge bundles, while
the JavaScript-based FDEB takes around 11 seconds. For
this data set, our method also achieves an interactive or
nearly interactive speed on different devices.

Table II
PERFORMANCE COMPARISON USING THE US AIRLINES GRAPH.

Desktop Laptop Tablet
CPU-based FDEB 3.82s - -

CUDA-based FDEB 0.001s - -
JS-based FDEB 12.52s 36.45s 11.10s

WebGL-based TBEB 0.05s 0.09s 0.16s

Apart from the real-world data sets, we used a set of
synthetic random graphs with different numbers of edges
(specifically, 100, 500, 1000, and 2000 edges) to conduct
a scalability test. We compared our WebGL-based TBEB
with d3’s JavaScript-based FDEB on the desktop. As shown
in Figure 4, we can clearly see that the computing time
of JavaScript-based FDEB increases dramatically with the
increasing number of edges. Therefore, it is less feasible
to use this method to process large graphs. Compared to
JavaScript-based method, the time of our WebGL-based
TBEB increases marginally for larger graphs. Table III
shows the detailed quantitative timing results. Our method
can maintain interactive frame rates for visualizing a graph
with thousands of edges.

Figure 4. Scalability Comparison between JavaScript-based FDEB and
WebGL-based TBEB.

Table III
SCALABILITY COMPARISON USING THE SYNTHETIC GRAPHS.

Number of Edges 100 500 1000 2000
JS-based FDEB 0.126s 2.648s 10.449s 11.255s

WebGL-based TBEB 0.004s 0.016s 0.017s 0.034s

B. Visualization

Figure 5 shows the visualization results of the US mi-
gration graph. We have compared our method with node-
link diagram and FDEB. As shown in Figure 5 (a), a
direct visualization of node-link diagram can easily incur
visual clutter, and it is relatively difficult to perceive the
main migration patterns from the graph. The high quality
of our TBEB method in Figure 5 (c) is nearly identical to
the original FDEB in Figure 5 (b). From both images, we
can see the major migration routes between the East Coast
and the West Coast and across the Midwest. The zoom-in
images in Figure 5 (b) and (c) convey the detailed patterns
among several cities around Texas. These patterns cannot be
revealed clearly in Figure 5 (a).

Figure 6 shows the visualization results of the US airlines
graph. Severe visual clutter is generated by directly visualiz-
ing the node-link diagram, as shown in Figure 6 (a). Figure 6
(b) and (c) are generated using FDEB and our TBEB method
respectively, and have a similar high quality to clearly show
the major bundles of airline routes that are difficult to be
perceived using the node-link diagram.

VI. CONCLUSION

We have presented a simple and efficient method for
the construction and visualization of edge bundles of large
graphs using standard features of consumer graphics hard-
ware. The performance evaluation shows our TBEB method
significantly improves the performance of edge bundling
on different devices, and the visualization results clearly
demonstrate that our TBEB method can achieve high quality
visualization results as FDEB. A web-based implementation

(a)

(b)

(c)

Figure 5. The visualization results of the US migration graph using a
direct visualization of node-link diagram (a), the FDEB method (b) and
our TBEB method (c).

of our method can be versatilely applied on various devices,
including ubiquitous smart mobile devices, without any
modification. Our solution has significantly enhanced the
interactivity and the usability of edge bundling, and enabled
a user to possibly explore a large graph on a mobile device
without visual clutter and at an interactive rate.

In the future, we would like to incorporate graph topo-
logical information into our method to improve the edge
bundling quality. We also plan to extend our method on
time-varying graphs by studying temporal visual coherence
during animation. Moreover, although our TBEB method

(a)

(b)

(c)

Figure 6. The visualization results of the US airlines graph using a direct
visualization of node-link diagram (a), the FDEB method (b) and our TBEB
method (c).

targets edge bundling, we expect that the basic acceleration
method and design strategy can be applied to other complex
graph visualization algorithms on a device with a generic
graphics computing capability. We will also investigate
scalable solutions to integrate graph visualization algorithms
with graph stores to provide users an interactive exploration
of big and complex graph information on mobile devices.

ACKNOWLEDGMENT

This research has been sponsored by the National Science
Foundation through grants IIS-1423487 and ICER-1541043.

REFERENCES

[1] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The State
of the Art in Visualizing Dynamic Graphs. In R. Borgo,

R. Maciejewski, and I. Viola, editors, EuroVis - STARs. The
Eurographics Association, 2014.

[2] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-
based edge clustering for graph visualization. Visualization
and Computer Graphics, IEEE Transactions on, 14(6):1277–
1284, 2008.

[3] d3.ForceBundle. https://github.com/upphiminn/d3.forcebundle.

[4] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareiro, and
A. Telea. Skeleton-based edge bundling for graph visual-
ization. Visualization and Computer Graphics, IEEE Trans-
actions on, 17(12):2364–2373, 2011.

[5] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Mul-
tilevel agglomerative edge bundling for visualizing large
graphs. In Pacific Visualization Symposium (PacificVis), 2011
IEEE, pages 187–194. IEEE, 2011.

[6] I. Herman, G. Melancon, and M. Marshall. Graph visual-
ization and navigation in information visualization: A survey.
Visualization and Computer Graphics, IEEE Transactions on,
6(1):24–43, Jan 2000.

[7] D. Holten. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. Visualization and
Computer Graphics, IEEE Transactions on, 12(5):741–748,
Sept 2006.

[8] D. Holten and J. J. van Wijk. Force-directed edge bundling for
graph visualization. In Proceedings of the 11th Eurographics /
IEEE - VGTC Conference on Visualization, EuroVis’09, pages
983–998, 2009.

[9] M. Pharr, R. Fernando, and T. Sweeney. GPU Gems 2:
Programming Techniques for High-Performance Graphics
and General-Purpose Computation. Addison-Wesley Profes-
sional, 2005.

[10] D. Selassie, B. Heller, and J. Heer. Divided edge bundling
for directional network data. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2354–2363, Dec
2011.

[11] A. Telea and O. Ersoy. Image-based edge bundles: Simplified
visualization of large graphs. In Computer Graphics Forum,
volume 29, pages 843–852. Wiley Online Library, 2010.

[12] C. Vehlow, F. Beck, and D. Weiskopf. The state of the art in
visualizing group structures in graphs. In EuroVis - STARs,
2015.

[13] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer,
J. J. van Wijk, J.-D. Fekete, and D. W. Fellner. Visual
analysis of large graphs: State-of-the-art and future research
challenges. In Computer graphics forum, volume 30, pages
1719–1749. Wiley Online Library, 2011.

[14] D. Zhu, K. Wu, D. Guo, and Y. Chen. Parallelized force-
directed edge bundling on the GPU. In Distributed Com-
puting and Applications to Business, Engineering Science
(DCABES), 2012 11th International Symposium on, pages
52–56, Oct 2012.

